Critical infrastructure networks, such as transportation and supply chains, are becoming increasingly interdependent. As the operability of network nodes relies on the operability of connected nodes, network disruptions have the potential to spread across entire networks, having catastrophic consequences in the realms of physical network performance and also economic performance. While risk-informed physical network models and economic models have been well-studied in the literature, there is limited study of how physical features of network performance interact with sector-specific economic performance, particularly as these physical networks recover from disruptions of varying durations.